Excitation and quenching mechanisms in the near-UV photodissociation of CH3Br and CH3Cl adsorbed on D2O or CH3OH on Cu(110).

نویسنده

  • E T Jensen
چکیده

Photochemical processes for CH3X (X = Cl, Br, I) adsorbed on top of thin films of D2O or CH3OH on a Cu(110) substrate is studied by time-of-flight mass spectrometry for a range of UV wavelengths (351-193 nm). Photodissociation via dissociative electron attachment by photoelectrons and by neutral photodissociation is identified and quantified based on the observed dynamics of the desorbing CH3 fragments. Photoelectron-driven dissociation of CH3X is found to be a maximum for monolayer quantities of the D2O or CH3OH on Cu(110), but with differing kinetic energy release on the two substrates. The dynamics of CH3Br and CH3Cl photodissociation qualitatively differ on CH3OH/Cu(110) as compared to D2O/Cu(110), which is ascribed to differing molecular structures for these systems. Evidence is presented for an efficient inter-molecular quenching mechanism for neutral photoexcitation of CH3Cl and CH3Br on the CH3OH/Cu(110) substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative studies of dissociative electron attachment to methyl halides

The dissociative electron attachment cross sections for the methyl halides vary in an enormous range from the virtually unmeasurable 10−23 cm2 for CH3Cl at room temperature to 10 −14 cm2 for CH3I. In this paper we supplement our previous studies by calculations of dissociative electron attachment to CH3Br and compare results for all methyl halides studied so far. The rate as a function of tempe...

متن کامل

Methyl chloride ( CH 3 Cl ) and methyl bromide ( CH 3 Br ) emissions from economically important tropical crops

Tropical rainforests have recently been confirmed to be the largest source of methyl chloride and a missing source for methyl bromide. However, very few field studies have quantified methyl halide emissions from tropical plants. This study presents the first methyl halide emission measurements from 16 tropical crop species at the University of California, Berkeley Botanical Gardens. Leaf vial e...

متن کامل

Potential Energy Surface of Methanol Decomposition on Cu(110)

Combining the dimer saddle point searching method and periodic density functional theory calculations, the potential energy surface of methanol decomposition on Cu(110) has been mapped out. Each elementary step in the methanol decomposition reaction into CO and hydrogen occurs via one of three possible mechanisms: O-H, C-H, or C-O bond scission. Multiple reaction pathways for each bond scission...

متن کامل

Synthesis, Characterization, and Crystal Structure Determination of a New Copper(II) Complex: [H2en][Cu(pydc)2].2H2O

The new complex of [H2en][Cu(pydc)2].2H2O (1) (where H2en and pydc are ethylenediammonium and 2,6-pyridinedicarboxylate, respectively) was synthesized by the reaction of a mixture of ethylenediamine (en) and 2,6-pyridinedicarboxylic acid (H2pydc) in a mixture of CH3OH/H2O as solvent. This complex was fully characterized by elemental analysis, IR, UV–Vis spectroscopy as well as single-crystal X-...

متن کامل

Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh

[1] Methyl bromide (CH3Br) and methyl chloride (CH3Cl) play important roles in stratospheric ozone depletion, but their atmospheric budgets have large uncertainties. The analysis of stable isotope composition of methyl halides may provide useful independent information for further constraining their budgets. Here we report the first measurements of CH3Br and CH3Cl stable carbon isotope ratios e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 14  شماره 

صفحات  -

تاریخ انتشار 2015